

AssayMax™ Mouse Apo A1 ELISA Kit

Assaypro LLC 3400 Harry S Truman Blvd St. Charles, MO 63301 T (636) 447-9175 F (636) 395-7419 www.assaypro.com

For any questions regarding troubleshooting or performing the assay, please contact our support team at support@assaypro.com.

Thank you for choosing Assaypro.

Assay Summary

Step 1. Add 50 μ l of Standard or Sample per well. Incubate 2 hours.

Step 2. Wash, then add 50 μ l of Biotinylated Antibody per well. Incubate 1 hour.

Step 3. Wash, then add 50 μ l of SP Conjugate per well. Incubate 30 minutes.

Step 4. Wash, then add 50 μ l of Chromogen Substrate per well. Incubate 10 minutes.

Step 5. Add 50 μ l of Stop Solution per well. Read at 450 nm immediately.

Symbol Key

Consult instructions for use.

Assay Template

12								
11								
10								
6								
80								
7								
9								
4								
æ								
2								
1								
	Ą	В	0	Q	E	F	9	I

AssayMax™ Mouse Apolipoprotein A-I (Apo A1) ELISA Kit

Catalog No. EMA5301-1
Sample insert for reference use only

Introduction

Human apolipoprotein A-I (Apo A1) comprises about 70% of the high-density lipoprotein's (HDL) protein mass, while Apo A2 comprises 15 – 20%. Apo A1, a 243-amino acid molecule that contains a series of highly homologous amphipathic alpha-helices, is a 28-kDa single polypeptide that lacks glycosylation or disulfide linkages (1). About 5 – 10% of Apo A1 in human plasma exists in a lipoprotein unassociated state. Apo A1 appears to have effects on atherosclerosis inhibition, reverse cholesterol transport, and antiinflammation (2). Oxidation of specific amino acid residues in Apo A1 may contribute to atherogenesis by impairing cholesterol efflux from macrophages (3). A majority of HDL functionality is derived from the ability of Apo A1 to sequester phospholipids and cholesterol as well as interact with plasma enzymes and cellular receptors (4). During reverse cholesterol transport, HDL interacts with lecithin:cholesteryl acyltransferase (LCAT) and cellular receptors, including ATP-binding cassette transporter protein A-I (ABCA1) and the scavenger receptor class B type I, in an ordered fashion that is reflected by HDL particle lipid composition. The beta-chain of ATP synthase, found on the surface of hepatocytes, contains a high-affinity HDL receptor for Apo A1 (5). The plasma concentration of Apo A1 is one of the best indicators of susceptibility to cardiovascular disease (6).

Principle of the Assay

The AssayMax™ Mouse Apolipoprotein A-I ELISA (Enzyme-Linked Immunosorbent Assay) Kit is designed for detection of Apo A1 in mouse plasma, serum, cell culture, and cell lysate samples. This assay employs a quantitative sandwich enzyme immunoassay technique that measures mouse Apo A1 in less than 4 hours. A polyclonal antibody specific for mouse Apo A1 has been pre-coated onto a 96-well microplate with removable strips. Apo A1 in standards and samples is sandwiched by the immobilized antibody and a biotinylated polyclonal antibody specific for mouse Apo A1, which is recognized by a streptavidin-peroxidase (SP) conjugate. All unbound material is washed away and a peroxidase enzyme substrate is added. The color development is stopped and the intensity of the color is measured.

Caution and Warning

- This product is for Research Use Only and is not intended for use in diagnostic procedures.
- Prepare all reagents (diluent buffer, wash buffer, standard, biotinylated antibody, and SP conjugate) as instructed, prior to running the assay.
- Prepare all samples prior to running the assay. The dilution factors for the samples are suggested in this insert. However, the user should determine the optimal dilution factor.
- Spin down the SP conjugate vial, the biotinylated antibody vial, and the standard diluent vial before opening and using contents.
- The Stop Solution is an acidic solution.
- The kit should not be used beyond the expiration date.

Reagents

- Mouse Apolipoprotein A-I Microplate: A 96-well polystyrene microplate (12 strips of 8 wells) coated with a polyclonal antibody against mouse Apo A1.
- Sealing Tapes: Each kit contains 3 precut, pressure sensitive sealing tapes that can be cut to fit the format of the individual assay.
- Mouse Apolipoprotein A-I Standard: Mouse Apo A1 in a buffered protein base (72 ng, lyophilized).
- Biotinylated Mouse Apolipoprotein A-I Antibody (40x): A 40-fold concentrated biotinylated polyclonal antibody against mouse Apo A1 (150 μl).
- MIX Diluent Concentrate (10x): A 10-fold concentrated buffered protein base (30 ml).
- Standard Diluent (1x): A buffered protein base with stabilizer (2 ml).
- Wash Buffer Concentrate (20x): A 20-fold concentrated buffered surfactant (30 ml, 2 bottles).
- SP Conjugate (100x): A 100-fold concentrate (80 μl).
- Chromogen Substrate (1x): A stabilized peroxidase chromogen substrate tetramethylbenzidine (7 ml).
- Stop Solution (1x): A 0.5 N hydrochloric acid solution to stop the chromogen substrate reaction (11 ml).

Storage Condition

- Upon arrival, immediately store components of the kit at recommended temperatures up to the expiration date.
- Store Standard, SP Conjugate, and Biotinylated Antibody at -20°C.
- Store Microplate, Diluent Concentrate (10x), Standard Diluent (1x), Wash Buffer, Stop Solution, and Chromogen Substrate at 2-8°C.

 Unused microplate wells may be returned to the foil pouch with the desiccant packs and resealed. May be stored for up to 30 days in a vacuum desiccator.

Other Supplies Required

- Microplate reader capable of measuring absorbance at 450 nm
- Pipettes (1-20 μl, 20-200 μl, 200-1000 μl, and multiple channel)
- Deionized or distilled reagent grade water

Sample Collection, Preparation, and Storage

- Plasma: Collect plasma using one-tenth volume of 0.1 M sodium citrate as an anticoagulant. Centrifuge samples at 3000 x g for 10 minutes and collect plasma. A 50000-fold sample dilution is suggested into MIX Diluent or within the range of 20000x 200000x; however, user should determine optimal dilution factor depending on application needs. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.
- **Serum:** Samples should be collected into a serum separator tube. After clot formation, centrifuge samples at 3000 x g for 10 minutes and remove serum. A 50000-fold sample dilution is suggested into MIX Diluent or within the range of 20000x 200000x; however, user should determine optimal dilution factor depending on application needs. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles
- Cell Culture Supernatant: Centrifuge cell culture media at 1500 rpm for 10 minutes at 4°C to remove debris and collect supernatant. If necessary, dilute samples into MIX Diluent; user should determine optimal dilution factor depending on application needs. The undiluted samples can be stored at -80°C. Avoid repeated freeze-thaw cycles.
- Cell Lysate: Rinse cell with cold PBS and then scrape the cell into a tube with 5 ml of cold PBS and 0.5 M EDTA. Centrifuge suspension at 1500 rpm for 10 minutes at 4°C and aspirate supernatant. Resuspend pellet in ice-cold Lysis Buffer (10 mM Tris pH 8.0, 130 mM NaCl, 1% Triton X-100, protease inhibitor cocktail). For every 1 x 10⁶ cells, add approximately 100 μl of ice-cold Lysis Buffer. Incubate on ice for 60 minutes. Centrifuge at 13000 rpm for 30 minutes at 4°C and collect supernatant. If necessary, dilute samples into MIX Diluent; user should determine optimal dilution factor depending on application needs. The undiluted samples can be stored at -80°C. Avoid repeated freeze-thaw cycles.

Applicable samples may also include biofluids, cell culture, and tissue homogenates. If necessary, user should determine optimal dilution factor depending on application needs.

Refer to Dilution Guidelines for further instruction.

	Guidelines for Dilutions of 100-fold or Greater (for reference only; please follow the insert for specific dilution suggested)			
100x			10000x	
A) 4 μl sample: 396 μl buffer (100x) = 100-fold dilution Assuming the needed volume is less than or equal to 400 μl.		A) B)	4 μl sample : 396 μl buffer (100x) 4 μl of A : 396 μl buffer (100x) = 10000-fold dilution Assuming the needed volume is less than or equal to 400 μl.	
1000x			100000x	
A) B)	4 μl sample : 396 μl buffer (100x) 24 μl of A : 216 μl buffer (10x) = 1000-fold dilution	A) B) C)	4 μl sample : 396 μl buffer (100x) 4 μl of A : 396 μl buffer (100x) 24 μl of B : 216 μl buffer (10x) = 100000-fold dilution	
	Assuming the needed volume is less than or equal to 240 μ l.		Assuming the needed volume is less than or equal to 240 μl.	

Reagent Preparation

- Freshly dilute all reagents and bring all reagents to room temperature before use.
- MIX Diluent Concentrate (10x): Dilute the MIX Diluent Concentrate 10fold with reagent grade water to produce a 1x solution. When diluting
 the concentrate, make sure to rinse the bottle thoroughly to extract any
 precipitates left in the bottle. Mix the 1x solution gently until the crystals
 have completely dissolved. Store for up to 30 days at 2-8°C.
- Mouse Apolipoprotein A-I Standard: Reconstitute the Mouse Apolipoprotein A-I Standard (72 ng) with 0.3 ml of Standard Diluent to generate a 240 ng/ml standard stock solution. Allow the vial to sit for 10 minutes with gentle agitation prior to making dilutions. Prepare duplicate or triplicate standard points by serially diluting from the standard stock solution (240 ng/ml) 2-fold with equal volume of MIX Diluent to produce 120, 60, 30, 15, 7.5, 3.75, and 1.875 ng/ml solutions. MIX Diluent serves as the zero standard (0 ng/ml). Aliquot remaining stock solution to limit repeated freeze-thaw cycles. This solution should be stored at -20°C and used within 30 days.

Standard Point	Dilution	[Apo A1] (ng/ml)
P1	1 part Standard (240 ng/ml) + 1 part MIX Diluent	120
P2	1 part P1 + 1 part MIX Diluent	60
Р3	1 part P2 + 1 part MIX Diluent	30
P4	1 part P3 + 1 part MIX Diluent	15
P5	1 part P4 + 1 part MIX Diluent	7.5
P6	P6 1 part P5 + 1 part MIX Diluent	
P7	1 part P6 + 1 part MIX Diluent	1.875
P8	MIX Diluent	0.0

- Biotinylated Mouse Apolipoprotein A-I Antibody (40x): Spin down the antibody briefly and dilute the desired amount of the antibody 40-fold with MIX Diluent to produce a 1x solution. The undiluted antibody should be stored at -20°C.
- Wash Buffer Concentrate (20x): Dilute the Wash Buffer Concentrate 20fold with reagent grade water to produce a 1x solution. When diluting
 the concentrate, make sure to rinse the bottle thoroughly to extract any
 precipitates left in the bottle. Mix the 1x solution gently until the crystals
 have completely dissolved.
- SP Conjugate (100x): Spin down the SP Conjugate briefly and dilute the desired amount of the conjugate 100-fold with MIX Diluent to produce a 1x solution. The undiluted conjugate should be stored at -20°C.

Assay Procedure

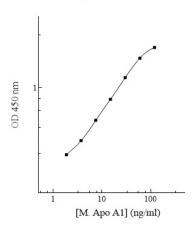
- Prepare all reagents, standard solutions, and samples as instructed. Bring all reagents to room temperature before use. The assay is performed at room temperature (20-25°C).
- Remove excess microplate strips from the plate frame and return them immediately to the foil pouch with desiccants inside. Reseal the pouch securely to minimize exposure to water vapor and store in a vacuum desiccator.
- Add 50 µl of Mouse Apolipoprotein A-I Standard or sample to each well.
 Gently tap plate to thoroughly coat the wells. Break any bubbles that may have formed. Cover wells with a sealing tape and incubate for 2 hours. Start the timer after the last addition.
- Wash the microplate manually or automatically using a microplate washer. Invert the plate and decant the contents; hit 4-5 times on absorbent material to completely remove the liquid. If washing manually, wash five times with 200 µl of Wash Buffer per well. Invert the plate each time and decant the contents; hit 4-5 times on absorbent material to completely remove the liquid. If using a microplate washer,

- wash six times with 300 µl of Wash Buffer per well; invert the plate and hit 4-5 times on absorbent material to completely remove the liquid.
- Add 50 µl of Biotinylated Mouse Apolipoprotein A-I Antibody to each well. Gently tap plate to thoroughly coat the wells. Break any bubbles that may have formed. Cover wells with a sealing tape and incubate for 1 hour.
- Wash the microplate as described above.
- Add 50 µl of SP Conjugate to each well. Gently tap plate to thoroughly coat the wells. Break any bubbles that may have formed. Cover wells with a sealing tape and incubate for 30 minutes. Turn on the microplate reader and set up the program in advance.
- Wash the microplate as described above.
- Add 50 µl of Chromogen Substrate to each well. Gently tap plate to thoroughly coat the wells. Break any bubbles that may have formed. Incubate in ambient light for 10 minutes or until the optimal blue color density develops.
- Add 50 µl of Stop Solution to each well. The color will change from blue to yellow. Gently tap plate to ensure thorough mixing. Break any bubbles that may have formed.
- Read the absorbance on a microplate reader at a wavelength of 450 nm immediately. If wavelength correction is available, subtract readings at 570 nm from those at 450 nm to correct optical imperfections.
 Otherwise, read the plate at 450 nm only. Please note that some unstable black particles may be generated at high concentration points after stopping the reaction for about 10 minutes, which will reduce the readings.

Data Analysis

- Calculate the mean value of the duplicate or triplicate readings for each standard and sample.
- To generate a standard curve, plot the graph using the standard concentrations on the x-axis and the corresponding mean 450 nm absorbance (OD) on the y-axis. The best fit line can be determined by regression analysis using log-log or four-parameter logistic curve fit.
- Determine the unknown sample concentration from the Standard Curve and multiply the value by the dilution factor.

Typical Data


The typical data is provided for reference only. Individual laboratory
means may vary from the values listed. Variations between laboratories
may be caused by technique differences.

Standard Point	ng/ml	OD	Average OD
P1	120	2.239	2.197
L1	120	2.155	2.197
P2	60	1.758	1.784
PZ	60	1.810	1.764
P3	30	1.206	1.222
PS	30	1.238	1.222
P4	15	0.811	0.802
F4		0.793	0.802
P5	7.5	0.522	0.533
FJ		0.544	0.555
P6	3.75	0.363	0.359
FU	3.73	0.355	0.333
P7	1.875	0.274	0.273
F /	1.075	0.272	0.273
P8	0.0	0.175	0.176
го	0.0	0.177	0.176

Standard Curve

• The curve is provided for illustration only. A standard curve should be generated each time the assay is performed.

Mouse Apo A1 Standard Curve

Performance Characteristics

This assay recognizes both natural and recombinant mouse Apo A1.

- The minimum detectable dose of mouse Apo A1 as calculated by 2SD from the mean of a zero standard was established to be 1.25 ng/ml.
- Intra-assay precision was determined by testing three plasma samples twenty times in one assay.
- Inter-assay precision was determined by testing three plasma samples in twenty assays.

	Intra-Assay Precision			Inter	-Assay Pred	ision
Sample	1	2	3	1	2	3
n	20	20	20	20	20	20
CV (%)	5.1%	5.6%	5.3%	10.1%	10.4%	9.9%
Average CV (%)	5.3%				10.1%	

Recovery

Standard Added Value	7.5 – 60 ng/ml	
Recovery %	89 – 112%	
Average Recovery %	97%	

Linearity

Plasma and serum samples were serially diluted to test for linearity.

Average Percentage of Expected Value (%)			
Sample Dilution Plasma Serum			
25000x	96%	94%	
50000x	101%	99%	
100000x	105%	107%	

Cross-Reactivity

Species	Cross-Reactivity (%)
Canine	None
Bovine	None
Human	None
Monkey	None
Rat	None
Swine	None
Rabbit	None

• 10% FBS in culture media will not affect the assay.

Troubleshooting

Issue	Causes	Course of Action		
	Use of improper	Check the expiration date listed before use.		
	components	 Do not interchange components from different lots. 		
		 Check that the correct wash buffer is being used. 		
		 Check that all wells are empty after aspiration. 		
	Improper wash step	 Check that the microplate washer is dispensing properly. 		
		 If washing by pipette, check for proper pipetting 		
_		technique.		
Low Precision	Splashing of reagents while loading wells	Pipette properly in a controlled and careful manner.		
re	Inconsistent volumes	 Pipette properly in a controlled and careful manner. 		
> ₽	loaded into wells	Check pipette calibration.		
ŏ	loaded litto Wells	 Check pipette for proper performance. 		
_	Insufficient mixing of	 Thoroughly agitate the lyophilized components after 		
	reagent dilutions	reconstitution.		
	reagent anations	Thoroughly mix dilutions.		
		 Check the microplate pouch for proper sealing. 		
	Improperly sealed	 Check that the microplate pouch has no punctures. 		
	microplate	Check that three desiccants are inside the microplate		
		pouch prior to sealing.		
_	Microplate was left	Each step of the procedure should be performed		
na	unattended between	uninterrupted.		
ig	steps			
h	Omission of step	Consult the provided procedure for complete list of steps.		
Unexpectedly Low or High Signal Intensity	Steps performed in incorrect order	 Consult the provided procedure for the correct order. 		
	Insufficient amount of	Check pipette calibration.		
w o	reagents added to	Check pipette for proper performance.		
ly Low o	wells			
<u> </u>	Wash step was skipped	Consult the provided procedure for all wash steps.		
ed	Improper wash buffer	 Check that the correct wash buffer is being used. 		
ect	Improper reagent	Consult reagent preparation section for the correct		
άx	preparation	dilutions of all reagents.		
ne	Insufficient or	 Consult the provided procedure for correct incubation 		
Ō	prolonged incubation	time.		
	periods			
		Sandwich ELISA: If samples generate OD values higher		
ı		than the highest standard point (P1), dilute samples		
e F	Non ontimal cample	further and repeat the assay.		
_≥	Non-optimal sample dilution	 Competitive ELISA: If samples generate OD values lower than the highest standard point (P1), dilute samples 		
S	ullution	further and repeat the assay.		
5		User should determine the optimal dilution factor for		
da		samples.		
Deficient Standard Curve Fit	Contamination of	A new tip must be used for each addition of different		
S	reagents	samples or reagents during the assay procedure.		
- in	Contents of wells	Verify that the sealing film is firmly in place before placing		
ici	evaporate	the assay in the incubator or at room temperature.		
efi		Pipette properly in a controlled and careful manner.		
	Improper pipetting	Check pipette calibration.		
		Check pipette for proper performance.		

Insufficient mixing of reagent dilutions	 Thoroughly agitate the lyophilized components after reconstitution. Thoroughly mix dilutions.
--	--

References

- (1) Davidson WS, Thompson TB. (2007) J Biol Chem. 282(31):22249-22253.
- (2) Nessen SE et al. (2003) J Am Med Assoc. 290:2292-2300.
- (3) Shao B et al. (2006) Curr Opin Mol Ther. 8(3):198-205.
- (4) Forte T et al. (1971) Biochim Biophys Acta. 248:381-386.
- (5) Martinez LO et al. (2003) Nature. 421(6918):75-79.
- (6) Noma A et al. (1983) Atherosclerosis. 49:1-7.

Version 1.1R1

10 March 2018