

AssayMax[™] Swine Albumin ELISA Kit

Assaypro LLC 3400 Harry S Truman Blvd St. Charles, MO 63301 T (636) 447-9175 F (636) 395-7419 www.assaypro.com

For any questions regarding troubleshooting or performing the assay, please contact our support team at support@assaypro.com.

Thank you for choosing Assaypro.

Assay Summary

Step 1. Add 25 μ l of Standard or Sample and 25 μ l of Biotinylated Protein per well. Incubate 2 hours.

Step 2. Wash, then add 50 μl of SP Conjugate per well. Incubate 30 minutes.

Step 3. Wash, then add 50 μ l of Chromogen Substrate per well. Incubate 10 minutes.

Step 4. Add 50 μ l of Stop Solution per well. Read at 450 nm immediately.

Symbol Key

Consult instructions for use.

Assay Template

12								
11								
10								
6								
∞								
7								
9								
ß								
4								
æ								
2								
1								
	A	B	С	D	Е	Ŀ	Ð	т

AssayMax[™] Swine Albumin ELISA Kit

Catalog No. EPA2201-1 Sample insert for reference use only

Introduction

Albumin, the main protein in plasma, is a globular unglycosylated serum protein with a molecular weight of 65 kDa that is synthesized by the liver. The preproalbumin contains 609 amino acids and is processed to 585 amino acids in the mature protein (1). It comprises three homologous domains that assemble to form a heart-shaped molecule. Each domain is a product of two subdomains that possess common structural motifs (2). Albumin regulates blood oncotic pressure or colloidal osmotic pressure and transports hydrophobic molecules, such as lipids, hormones, and toxins. It is also an important circulating antioxidant and possesses enzymatic properties (3). Serum albumin level has been linked in clinical practice to several diseases. Low albumin levels can suggest liver disease, kidney disease, inflammation, shock, and malnutrition (4-6). On the other hand, high albumin levels usually reflect dehydration (7).

Principle of the Assay

The AssayMax[™] Swine Albumin ELISA (Enzyme-Linked Immunosorbent Assay) Kit is designed for detection of albumin in swine **plasma and serum samples**. This assay employs a quantitative **competitive enzyme immunoassay** technique that measures swine albumin in less than 3 hours. A polyclonal antibody specific for swine albumin has been pre-coated onto a 96-well microplate with removable strips. Albumin in standards and samples is competed with a biotinylated swine albumin protein sandwiched by the immobilized antibody and streptavidin-peroxidase (SP) conjugate. All unbound material is washed away and a peroxidase enzyme substrate is added. The color development is stopped and the intensity of the color is measured.

Caution and Warning

- This product is for **Research Use Only** and is not intended for use in diagnostic procedures.
- Prepare all reagents (diluent buffer, wash buffer, standard, biotinylated protein, and SP conjugate), as instructed, prior to running the assay.

- Prepare all samples prior to running the assay. The dilution factors for the samples are suggested in this insert. However, the user should determine the optimal dilution factor.
- Spin down the SP conjugate vial before opening and using contents.
- The Stop Solution is an acidic solution.
- The kit should not be used beyond the expiration date.

Reagents

- Swine Albumin Microplate: A 96-well polystyrene microplate (12 strips of 8 wells) coated with a polyclonal antibody against swine albumin.
- **Sealing Tapes:** Each kit contains 3 precut, pressure sensitive sealing tapes that can be cut to fit the format of the individual assay.
- Swine Albumin Standard: Swine albumin in a buffered protein base (120 μg, lyophilized).
- Biotinylated Swine Albumin Protein (1x): Lyophilized.
- MIX Diluent Concentrate (10x): A 10-fold concentrated buffered protein base (30 ml).
- Wash Buffer Concentrate (20x): A 20-fold concentrated buffered surfactant (30 ml).
- SP Conjugate (100x): A 100-fold concentrate (80 µl).
- **Chromogen Substrate (1x):** A stabilized peroxidase chromogen substrate tetramethylbenzidine (7 ml).
- Stop Solution (1x): A 0.5 N hydrochloric acid solution to stop the chromogen substrate reaction (11 ml).

Storage Condition

- Upon arrival, immediately store components of the kit at recommended temperatures up to the expiration date.
- Store SP Conjugate at -20°C.
- Store Microplate, Diluent Concentrate (10x), Wash Buffer, Stop Solution, and Chromogen Substrate at 2-8°C.
- Unused microplate wells may be returned to the foil pouch with the desiccant packs and resealed. May be stored for up to 30 days in a vacuum desiccator.
- Store Standard and Biotinylated Protein at 2-8°C before reconstituting with Diluent and at -20°C after reconstituting with Diluent.

Other Supplies Required

- Microplate reader capable of measuring absorbance at 450 nm
- Pipettes (1-20 µl, 20-200 µl, 200-1000 µl, and multiple channel)
- Deionized or distilled reagent grade water

Sample Collection, Preparation, and Storage

- **Plasma:** Collect plasma using one-tenth volume of 0.1 M sodium citrate as an anticoagulant. Centrifuge samples at 3000 x g for 10 minutes and collect plasma. A 2000-fold sample dilution is suggested into MIX Diluent; however, user should determine optimal dilution factor depending on application needs. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.
- Serum: Samples should be collected into a serum separator tube. After clot formation, centrifuge samples at 3000 x g for 10 minutes and remove serum. A 2000-fold sample dilution is suggested into MIX Diluent; however, user should determine optimal dilution factor depending on application needs. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.

Applicable samples may also include biofluids, cell culture, and tissue homogenates. If necessary, user should determine optimal dilution factor depending on application needs.

	Guidelines for Dilutions of 100-fold or Greater (for reference only; please follow the insert for specific dilution suggested)					
	100x		10000x			
A)	4 μl sample : 396 μl buffer (100x) = 100-fold dilution Assuming the needed volume is less than or equal to 400 μl.	A) B)	4 μl sample : 396 μl buffer (100x) 4 μl of A : 396 μl buffer (100x) = 10000-fold dilution Assuming the needed volume is less than or equal to 400 μl.			
	1000x		100000x			
A) B)	4 μl sample : 396 μl buffer (100x) 24 μl of A : 216 μl buffer (10x) = 1000-fold dilution	A) B) C)	4 μl sample : 396 μl buffer (100x) 4 μl of A : 396 μl buffer (100x) 24 μl of B : 216 μl buffer (10x) = 100000-fold dilution			
	Assuming the needed volume is less than or equal to 240 μl.		Assuming the needed volume is less than or equal to 240 $\mu l.$			

Refer to Dilution Guidelines for further instruction.

Reagent Preparation

- Freshly dilute all reagents and bring all reagents to room temperature before use.
- MIX Diluent Concentrate (10x): Dilute the MIX Diluent Concentrate 10fold with reagent grade water to produce a 1x solution. When diluting the concentrate, make sure to rinse the bottle thoroughly to extract any

precipitates left in the bottle. Mix the 1x solution gently until the crystals have completely dissolved. Store for up to 30 days at 2-8°C.

Swine Albumin Standard: Reconstitute the Swine Albumin Standard (120 μg) with 1.2 ml of MIX Diluent to generate a 100 μg/ml standard stock solution. Allow the vial to sit for 10 minutes with gentle agitation prior to making dilutions. Prepare duplicate or triplicate standard points by serially diluting from the standard stock solution (100 μg/ml) 2-fold with equal volume of MIX Diluent to produce 50, 25, 12.5, 6.25, and 3.125 μg/ml solutions. MIX Diluent serves as the zero standard (0 μg/ml). Any remaining stock solution should be stored at -20°C and used within 30 days. Avoid repeated freeze-thaw cycles.

Standard Point	Dilution	[Albumin] (µg/ml)
P1	1 part Standard (100 μg/ml)	100
P2	1 part P1 + 1 part MIX Diluent	50
P3	1 part P2 + 1 part MIX Diluent	25
P4	1 part P3 + 1 part MIX Diluent	12.5
P5	1 part P4 + 1 part MIX Diluent	6.25
P6	1 part P5 + 1 part MIX Diluent	3.125
P7	MIX Diluent	0.0

- Biotinylated Swine Albumin Protein (1x): Reconstitute the Biotinylated Swine Albumin Protein with 5 ml of MIX Diluent to generate a stock solution. Allow the vial to sit for 10 minutes with gentle agitation prior to use. Any remaining stock solution should be stored at -20°C and used within 30 days. Avoid repeated freeze-thaw cycles.
- Wash Buffer Concentrate (20x): Dilute the Wash Buffer Concentrate 20fold with reagent grade water to produce a 1x solution. When diluting the concentrate, make sure to rinse the bottle thoroughly to extract any precipitates left in the bottle. Mix the 1x solution gently until the crystals have completely dissolved.
- SP Conjugate (100x): Spin down the SP Conjugate briefly and dilute the desired amount of the conjugate 100-fold with MIX Diluent to produce a 1x solution. The undiluted conjugate should be stored at -20°C.

Assay Procedure

- Prepare all reagents, standard solutions, and samples as instructed. Bring all reagents to room temperature before use. The assay is performed at room temperature (20-25°C).
- Remove excess microplate strips from the plate frame and return them immediately to the foil pouch with desiccants inside. Reseal the pouch

securely to minimize exposure to water vapor and store in a vacuum desiccator.

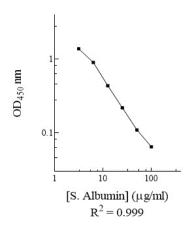
- Add 25 µl of Swine Albumin Standard or sample to each well, and immediately add 25 µl of Biotinylated Swine Albumin Protein to each well (on top of the standard or sample). Gently tap plate to ensure thorough mixing. Break any bubbles that may have formed. Cover wells with a sealing tape and incubate for 2 hours. Start the timer after the last addition.
- Wash the microplate manually or automatically using a microplate washer. Invert the plate and decant the contents; hit 4-5 times on absorbent material to completely remove the liquid. If washing manually, wash five times with 200 µl of Wash Buffer per well. Invert the plate each time and decant the contents; hit 4-5 times on absorbent material to completely remove the liquid. If using a microplate washer, wash six times with 300 µl of Wash Buffer per well; invert the plate and hit 4-5 times on absorbent material to completely remove the liquid.
- Add 50 µl of SP Conjugate to each well. Gently tap plate to thoroughly coat the wells. Break any bubbles that may have formed. Cover wells with a sealing tape and incubate for 30 minutes. Turn on the microplate reader and set up the program in advance.
- Wash the microplate as described above.
- Add 50 μl of Chromogen Substrate to each well. Gently tap plate to thoroughly coat the wells. Break any bubbles that may have formed. Incubate in ambient light for 10 minutes or until the optimal blue color density develops.
- Add 50 µl of Stop Solution to each well. The color will change from blue to yellow. Gently tap plate to ensure thorough mixing. Break any bubbles that may have formed.
- Read the absorbance on a microplate reader at a wavelength of 450 nm **immediately**. If wavelength correction is available, subtract readings at 570 nm from those at 450 nm to correct optical imperfections. Otherwise, read the plate at 450 nm only. Please note that some unstable black particles may be generated at low concentration points after stopping the reaction for about 10 minutes, which will reduce the readings.

Data Analysis

- Calculate the mean value of the duplicate or triplicate readings for each standard and sample.
- To generate a standard curve, plot the graph using the standard concentrations on the x-axis and the corresponding mean 450 nm absorbance (OD) on the y-axis. The best fit line can be determined by regression analysis using log-log or four-parameter logistic curve fit.

• Determine the unknown sample concentration from the Standard Curve and multiply the value by the dilution factor.

Typical Data


• The typical data is provided for reference only. Individual laboratory means may vary from the values listed. Variations between laboratories may be caused by technique differences.

Standard Point	μg/ml	OD	Average OD
P1	100	0.062 0.068	0.065
P2 50		0.105 0.115	0.110
Р3	P3 25		0.219
P4	12.5	0.458 0.416	0.437
P5	6.25	0.885 0.917	0.901
P6	3.125	1.435 1.331	1.383
P7 0.0		2.397 2.239	2.318
Sample: Po Sodium Citrate		0.318 0.312	0.315

Standard Curve

• The curve is provided for illustration only. A standard curve should be generated each time the assay is performed.

Swine Albumin Standard Curve

Reference Value

• Normal swine albumin plasma and serum levels range from 19 – 39 mg/ml.

Performance Characteristics

- The minimum detectable dose of swine albumin as calculated by 2SD from the mean of a zero standard was established to be 1.9 μg/ml.
- Intra-assay precision was determined by testing three plasma samples twenty times in one assay.
- Inter-assay precision was determined by testing three plasma samples in twenty assays.

	Intra-Assay Precision			Inter-Assay Precision		
Sample	1	2	3	1	2	3
n	20	20	20	20	20	20
CV (%)	6.6%	5.2%	6.2%	11.2%	9.7%	10.6%
Average CV (%)	6.0%				10.5%	

Recovery

Standard Added Value	6.25 – 50 μg/ml	
Recovery %	88 - 113%	
Average Recovery %	96%	

Linearity

• Plasma and serum samples were serially diluted to test for linearity.

Average Percentage of Expected Value (%)				
Sample Dilution	Plasma	Serum		
1000x	89%	91%		
2000x	95%	101%		
4000x	112%	110%		

Cross-Reactivity

Species	Cross-Reactivity (%)	
Canine	None	
Bovine	None	
Equine	None	
Monkey	None	
Mouse	None	
Rat	None	
Human	None	
Rabbit	None	

Troubleshooting

Issue	Causes	Course of Action		
	Use of improper components	 Check the expiration date listed before use. Do not interchange components from different lots. 		
E	Improper wash step	 Check that the correct wash buffer is being used. Check that all wells are empty after aspiration. Check that the microplate washer is dispensing properly. If washing by pipette, check for proper pipetting technique. 		
cisio	Splashing of reagents while loading wells	 Pipette properly in a controlled and careful manner. 		
Low Precision	Inconsistent volumes loaded into wells	 Pipette properly in a controlled and careful manner. Check pipette calibration. Check pipette for proper performance. 		
Г	Insufficient mixing of reagent dilutions	 Thoroughly agitate the lyophilized components after reconstitution. Thoroughly mix dilutions. 		
	Improperly sealed microplate	 Check the microplate pouch for proper sealing. Check that the microplate pouch has no punctures. Check that three desiccants are inside the microplate pouch prior to sealing. 		

ignal	Microplate was left unattended between steps	 Each step of the procedure should be performed uninterrupted. 				
Si	Omission of step	Consult the provided procedure for complete list of steps.				
Unexpectedly Low or High Signal Intensity	Steps performed in incorrect order	Consult the provided procedure for the correct order.				
tor	Insufficient amount of	 Check pipette calibration. 				
ly Low ol Intensity	reagents added to wells	Check pipette for proper performance.				
lī	Wash step was skipped	 Consult the provided procedure for all wash steps. 				
tec	Improper wash buffer	 Check that the correct wash buffer is being used. 				
xpec	Improper reagent preparation	 Consult reagent preparation section for the correct dilutions of all reagents. 				
Une	Insufficient or prolonged incubation periods	 Consult the provided procedure for correct incubation time. 				
Deficient Standard Curve Fit	Non-optimal sample dilution	 Sandwich ELISA: If samples generate OD values higher than the highest standard point (P1), dilute samples further and repeat the assay. Competitive ELISA: If samples generate OD values lower than the highest standard point (P1), dilute samples further and repeat the assay. User should determine the optimal dilution factor for samples. 				
anda	Contamination of reagents	 A new tip must be used for each addition of different samples or reagents during the assay procedure. 				
nt St	Contents of wells evaporate	 Verify that the sealing film is firmly in place before placing the assay in the incubator or at room temperature. 				
Deficie	Improper pipetting	 Pipette properly in a controlled and careful manner. Check pipette calibration. Check pipette for proper performance. 				
	Insufficient mixing of reagent dilutions	 Thoroughly agitate the lyophilized components after reconstitution. Thoroughly mix dilutions. 				

References

- (1) Minghetti PP et al. (1986) J Biol Chem. 261(15):6747-6757.
- (2) He XM, Carter DC. (1992) Nature. 358(6383):209-215.
- (3) Minchiotti L et al. (2008) Human Mutation. 29(8):1007-1016.
- (4) Schindler C et al. (1999) J Hepatol. 31(6):1132.
- (5) Hemmelder MH et al. (1997) Nephrol Dial Transplant. 12 Suppl 2:57-62.
- (6) Wettstein R et al. (2004) Shock. 22(4):351-357.
- (7) Strand TA. (2004) Am J Clin Nutr. 79(3):451-456.

Version 2.0